CRM08

Rev 1.10

«Civil»

<28/06/2022>

CONTINUOUS INTERNAL EVALUATION- 1

Dept: CV	Sem / Div: 4th	Sub: Analysis of Determinate Structures	S Code: 18CV42
Date: 04/07/2022	Time: 3:00-4:30 pm	Max Marks: 50	Elective: N
Note: Answer any	2 full questions, che	oosing one full question from each part.	

QN	Questions	Marks	RBT	COs
	PART A			
l li	A three hinged parabolic arch hinged at the supports and at the crown has a span of 24m and a central rise of 4m. It carries a concentrated oad of 50kN at 18m from the left support and a UDL of 30kN/m over the left half portion. Determine the bending moment, normal thrust and radial shear at a section 6m from left support.	15	L3	CO5
b A	A suspension cable having supports at same level has a span of 40m and maximum dip of 4m. The cable is loaded with UDL of 10kN/m brough its length. Calculate the maximum and minimum tension in the cable. Also find the length of the cable.	10	L3	CO5
po thi	three hinged parabolic arch having supports at different levels of pan 60m. Its abutments A and B are at depths of 15m and 30m from own C. The arch carries UDL of 20kN/m over the portion AC and a point load of 100kN at a point 10m from B. Find the reactions, normal rust and radial shear, bending moment at 15m from A.	15	L3	CO5
bA cable is suspended between two points A and B 80m apart horizontally and a central dip of 6m. It supports a UDL of 20kN/m. Calculate the length of cable, maximum and minimum tension in the cable.			L3	CO5
1	PART B			
slo	A Lam, I C Lam, 2I B	15	L3	CO3
	termine the slope and deflection at the free end of the cantilever area method. Take 4000kNm² A 1.5m In March 100	10	L3	CO3

Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Bekgavi & Approved by AICTE New Delhi

CRMO8

Rev 1.10

«Civil»

<28/06/2022>

CONTINUOUS INTERNAL EVALUATION- 1

4 a Determine the slope at beam shown in follow	OR supports and deflection ing figure using mome	n under point load for the ent area method. Take El	15	L3	CO3
as constant.	8kN				
A T	3m *	2m B			
b Determine the slope shown in following fig	and deflection of the gure at the free end by	loaded cantilever beam conjugate beam method.	10	L3	CO3
Take EI as constant.	lokn	20kN		1333	
A 3m	€3	sm— +B			

Prepared by: Mr. Shishirakrishna S.

HOD: Dr. Ananda V. R.

Page: 2